

General Certificate of Education Advanced Level Examination

Mathematics

Unit Further Pure 3

Thursday 16 June 20111.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer the questions in the spaces provided. Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

The function $y(x)$ satisfies the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\mathrm{f}(x, y)
$$

where

$$
\mathrm{f}(x, y)=x+\ln (1+y)
$$

and

$$
y(2)=1
$$

Use the improved Euler formula

$$
y_{r+1}=y_{r}+\frac{1}{2}\left(k_{1}+k_{2}\right)
$$

where $k_{1}=h \mathrm{f}\left(x_{r}, y_{r}\right)$ and $k_{2}=h \mathrm{f}\left(x_{r}+h, y_{r}+k_{1}\right)$ and $h=0.2$, to obtain an approximation to $y(2.2)$, giving your answer to four decimal places. (5 marks)

2 (a) Find the values of the constants p and q for which $p+q x \mathrm{e}^{-2 x}$ is a particular integral of the differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} x}-2 y=4-9 \mathrm{e}^{-2 x} \tag{5marks}
\end{equation*}
$$

(b) Hence find the general solution of this differential equation.
(c) Hence express y in terms of x, given that $y=4$ when $x=0$ and that $\frac{\mathrm{d} y}{\mathrm{~d} x} \rightarrow 0$ as $x \rightarrow \infty$.

3 (a) Find $\int x^{2} \ln x \mathrm{~d} x$.
(3 marks)
(b) Explain why $\int_{0}^{\mathrm{e}} x^{2} \ln x \mathrm{~d} x$ is an improper integral.
(c) Evaluate $\int_{0}^{\mathrm{e}} x^{2} \ln x \mathrm{~d} x$, showing the limiting process used. (3 marks)

4 By using an integrating factor, find the solution of the differential equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+(\cot x) y=\sin 2 x, \quad 0<x<\frac{\pi}{2}
$$

given that $y=\frac{1}{2}$ when $x=\frac{\pi}{6}$.

5 (a) Given that $y=\ln (1+2 \tan x)$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ and $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(You may leave your expression for $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ unsimplified.)
(4 marks)
(b) Hence, using Maclaurin's theorem, find the first two non-zero terms in the expansion, in ascending powers of x, of $\ln (1+2 \tan x)$.
(c) Find

$$
\lim _{x \rightarrow 0}\left[\frac{\ln (1+2 \tan x)}{\ln (1-x)}\right]
$$

(4 marks)

6 A differential equation is given by

$$
\left(x^{3}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2-4 x^{3}
$$

(a) Show that the substitution

$$
u=\frac{\mathrm{d} y}{\mathrm{~d} x}-2 x
$$

transforms this differential equation into

$$
\left(x^{3}+1\right) \frac{\mathrm{d} u}{\mathrm{~d} x}=3 x^{2} u
$$

(b) Hence find the general solution of the differential equation

$$
\left(x^{3}+1\right) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}-3 x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}=2-4 x^{3}
$$

giving your answer in the form $y=\mathrm{f}(x)$.
$7 \quad$ The curve C_{1} is defined by $r=2 \sin \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}$.
The curve C_{2} is defined by $r=\tan \theta, \quad 0 \leqslant \theta<\frac{\pi}{2}$.
(a) Find a cartesian equation of C_{1}.
(b) (i) Prove that the curves C_{1} and C_{2} meet at the pole O and at one other point, P, in the given domain. State the polar coordinates of P.
(ii) The point A is the point on the curve C_{1} at which $\theta=\frac{\pi}{4}$.

The point B is the point on the curve C_{2} at which $\theta=\frac{\pi}{4}$.
Determine which of the points A or B is further away from the pole O, justifying your answer.
(iii) Show that the area of the region bounded by the arc $O P$ of C_{1} and the arc $O P$ of C_{2} is $a \pi+b \sqrt{3}$, where a and b are rational numbers.

END OF QUESTIONS

